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Devoir sur Table 4

Durée : 4h

• Les exercices sont indépendants. Ils peuvent être traités dans un ordre quelconque.
• Tous les documents sur papier sont interdits.
• Les calculatrices ne sont pas autorisées.
• Le matériel de géométrie (règle, compas, équerre) est autorisé.
• La notation des copies tiendra compte dans une large mesure de la qualité de la rédac-

tion. Ceci implique que vous devez faire des raisonnements clairs, concis et complets,
utiliser un langage mathématiques adapté et précis, être lisible et éviter les fautes
d’orthographe et de grammaire.
• Si, au cours du devoir, vous repérez ce qui vous semble être une erreur d’énoncé, vous

le signalez sur votre copie et poursuivez sa composition en expliquant les raisons des
initiatives que vous avez été amené à prendre.
• Mettez en évidence vos résultats en les encadrant.
• Conformément au règlement de la Banque PT

— Composer lisiblement sur les copies avec un stylo à bille à encre foncée : bleue
ou noire.

— L’usage de liquide de correction et dérouleur de ruban correcteur est interdit.

Le soin apporté à la copie fera l’objet d’une évaluation suivant les critères suivants :
— Mise en évidence des résultats
— Soin et lisibilité de la copie. En particulier les traits, y compris pour les ratures,

devront être tracés à l’aide d’une règle
— Respect des consignes concernant le liquide de correction et le dérouleur de ruban

correcteur
— Respect de la grammaire et de l’orthographe

Exercice 1 Étude de la cissoïde droite
(adapté de École de l’Air MP 2002)

On désigne par D la droite d’équation x = 2 et par C le cercle de centre M0(−1, 0), de rayon
1.

Pour tout nombre réel t, on désignera par :
— H(t) le point d’intersection de la droite d’équation y = tx et de la droite D.
— M(t) le point d’intersection de la droite d’équation y = tx et du cercle C (avec la convention

que lorsqu’il y a deux points d’intersection, M(t) désigne le point d’intersection distinct de
O).

1. Donner une équation cartésienne du cercle C.
2. Déterminer les coordonnées de M(t) et H(t).

On note J(t) le milieu J(t) du segment [M(t),H(t)].

3. Vérifier que J(t) a pour coordonnées


x(t) =

t2

1 + t2

y(t) =
t3

1 + t2

4. Déterminer le vecteur dérivé à la courbe t 7→ J(t), puis en déduire les points stationnaires
(c’est-à-dire non réguliers) de celle-ci.

5. En déduire que, pour t0 6= 0, la tangente à la courbe t 7→ J(t) au point J(t0) a pour équation
t0(t

2
0 + 3)x− 2y = t30.
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6. Étudier la nature du point J(0).
7. Dresser le tableau des variations des coordonnées x(t), y(t) du point J(t) pour t ∈ R+

8. Représenter sur une même figure sur le papier millimétré joint, la droite D, le cercle C, et le
support de cette courbe t 7→ J(t).

9. Montrer que le support de la courbe t 7→ J(t) est inclus dans la courbe d’équation x(x2 +
y2)− y2 = 0.

10. Réciproquement soit M(x, y) un point de la courbe d’équation x(x2 + y2)− y2 = 0. Montrer
qu’il existe un réel t tel que M(x, y) = J(t).

Problème 1 Racines carrées d’un endomorphisme
(adapté de CCINP PC 2010)

Dans tout ce problème, n est un entier naturel supérieur ou égal à 2 et E est un R-espace
vectoriel de dimension fine n

Si f ∈ L(E) on notera :
R(f) = {h ∈ L(E) , h2 = f}

L’objectif du problème est d’étudier des conditions nécessaires ou suffisantes à l’existence de
racines carrées d’un endomorphisme f et de décrire dans certains cas l’ensemble R(f).

Partie I
On désigne par f l’endomorphisme de R3 dont la matrice dans la base canonique est donnée

par :

A =

 8 4 −7
−8 −4 8
0 0 1


1. Montrer que f est diagonalisable.
2. Déterminer une base (v1, v2, v3) de R3 formée de vecteurs propres de f et donner la matrice

D de f dans cette nouvelle base.
3. Soit P la matrice de passage de la base canonique à la base (v1, v2, v3) et soit m ∈ N∗. Sans

calculer l’inverse de P , exprimer Am en fonction de D, P et P−1.
4. Calculer P−1, puis déterminer la matrice de fm dans la base canonique
5. Déterminer toutes les matrices de M3(R) qui commutent avec la matrice D trouvée à la

question 2. .
6. Montrer que si H ∈M3(R) vérifie H2 = D, alors H et D commutent.
7. Déduire de ce qui précède toutes les matrices H de M3(R) vérifiant H2 = D,
8. Déterminer tous les endomorphismes h de R3 vérifiant h2 = f en donnant leur matrice dans

la base canonique.

Partie II
Soit f et j les endomorphismes de R3 dont les matrices respectives A et J dans la base canonique

sont données par :

A =

2 1 1
1 2 1
1 1 2

 et J =

1 1 1
1 1 1
1 1 1

 .

9. (a) Calculer Jm pour tout entier m > 1.

(b) En déduire que pour tout m ∈ N∗, fm = Id+
1

3
(4m − 1)j. Cette relation est-elle encore

valable pour m = 0 ?
10. Montrer que f admet deux valeurs propres distinctes λ et µ telles que λ < µ.
11. Montrer qu’il existe un unique couple (p, q) d’endomorphismes de R3 tel que pour tout entier

m > 0, fm = λmp + µmq et montrer que ces endomorphismes p et q sont linéairement
indépendants.

12. Après avoir calculé p2, q2, p ◦ q et q ◦ p, trouver tous les endomorphismes h combinaisons
linéaires de p et q qui vérifient h2 = f .
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13. (a) Montrer que f est diagonalisable et trouver une base de vecteurs propres de f .
(b) Écrire la matrice D de f , puis la matrice de p et de q dans cette nouvelle base.

14. (a) Déterminer une matrice K deM2(R) non diagonale telle que K2 = I2, puis une matrice
Y de M3(R) non diagonale telle que Y 2 = D.

(b) En déduire qu’il existe un endomorphisme h de R3 vérifiant h2 = f qui n’est pas
combinaison linéaire de p et q.

15. Montrer que tous les endomorphismes h de R3 vérifiant h2 = f sont diagonalisables.

Partie III
Soit f un endomorphisme de E. On suppose qu’il existe (λ, µ) ∈ R2 et deux endomorphismes

non nuls p et q de E tels que :

λ 6= µ et


Id = p+ q
f = λp+ µq
f2 = λ2p+ µ2q.

16. (a) Calculer (f − λId) ◦ (f − µId).
(b) Montrer que Im(f − µId) ⊂ Ker(f − λId) et Im(f − λId) ⊂ Ker(f − µId)

(c) Déterminer deux réels a et b tel que a(X − λ) + b(X − µ) = 1

(d) Montrer que E = Ker(f − λId)⊕Ker(f − µId)

(e) Qu’en déduit-on sur f ?
17. Déduire de la relation trouvée dans la question 16.(a) que p ◦ q = q ◦ p = 0L(E) puis montrer

que p2 = p et q2 = q.
On suppose jusqu’à la fin de cette partie que λ > 0 et µ > 0.

18. Montrer que f est un isomorphisme et écrire f−1 comme combinaison linéaire de p et q.
19. Montrer que pour tout m ∈ Z : fm = λmp+ µmq

20. Soit F le sous-espace de L(E) engendré par p et q. Déterminer la dimension de F .
21. Déterminer R(f) ∩ F .
22. Soit k un entier supérieur ou égal à 2. Déterminer une matrice K de Mk(R) non diagonale

et vérifiant K2 = Ik.
23. Montrer que si l’ordre de multiplicité de la valeur propre λ est supérieur ou égal à 2, alors il

existe un endomorphisme p′ ∈ L(E) \ F tel que p′
2
= p et p′ ◦ q = q ◦ p′ = 0L(E).

24. En déduire que si dim(E) > 3, alors R(f) 6⊂ F .

Problème 2
(adapté de EML ECS 2008)

On confond polynôme et application polynomiale de R dans R.
On note E l’ensemble des applications u : R → R, continues sur R et telles que l’intégrale∫ +∞

−∞
(u(x))

2
e−x2

dx converge.

On note, pour tout n ∈ N, Fn le R-espace vectoriel des applications polynomiales de R dans R,
de degré inférieur ou égal à n.

On admet que

∀m ∈ R,
∫ +∞

−∞
e−(x−m)2 dx =

√
π

Partie I — Un produit scalaire sur E

1. Établir que
∀(α, β) ∈ [0,+∞[2 αβ 6 1

2
(α2 + β2)

2. En déduire que, pour tout (u, v) ∈ E2, l’intégrale
∫ +∞

−∞
u(x)v(x)e−x2

dx converge.
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On note 〈�, �〉 l’application de E2 dans R qui, à tout (u, v) ∈ E2, associe 1√
π

∫ +∞

−∞
u(x)v(x)e−x2

dx.

On notera la présence du facteur 1√
π

.

3. (a) Démontrer que E est un R-espace vectoriel.
(b) Montrer que l’application 〈�, �〉 est un produit scalaire sur E.

4. Démontrer que R[X] ⊂ E.

On note encore 〈�, �〉 la restriction à R[X] ou à Rn[X], pour n ∈ N, du produit scalaire 〈�, �〉
sur E. On admet que cette restriction est encore un produit scalaire sur R[X] ou sur Rn[X].
On note ‖ � ‖ la norme sur E associée au produit scalaire 〈�, �〉, définie, pour tout u ∈ E,
par :‖u‖ =

√
〈u, u〉

Partie II — Polynômes d’Hermite
On note w l’application de R dans R, de classe C∞, définie pour tout x ∈ R par w(x) = e−x2

.
Pour tout n ∈ N, on note Hn l’application de R dans R définie pour tout x ∈ R par

Hn(x) = (−1)nex
2

w(n)(x), où w(n) désigne la dérivée n-ième de w.
En particulier : H0 = 1.

5. Calculer, pour tout x ∈ R, H1(x), H2(x), H3(x) On fera figurer les calculs sur la copie.
6. (a) Montrer, pour tout n ∈ N et tout x ∈ R :

Hn+1(x) = 2xHn(x)−H ′
n(x)

(b) En déduire que, pour tout n ∈ N, Hn est un polynôme de degré n.
(c) Contrôler alors les résultats obtenus en 5. et calculer H4 On fera figurer les calculs sur

la copie.
7. Déterminer, pour tout n ∈ N, le coefficient du terme de plus haut degré de Hn.
8. Montrer, pour tout n ∈ N et tout x ∈ R : Hn(−x) = (−1)nHn(x).

Qu’en déduit-on, en terme de parité, pour l’application Hn ?

Partie III — Lien entre le produit scalaire et les polynômes d’Hermite
9. (a) Montrer, pour tout n ∈ N∗ et tout P ∈ R[X]

〈P ′,Hn−1〉 = 〈P,Hn〉

où 〈�, �〉 est le produit scalaire sur F défini en 2..
On pourra effectuer une intégration par parties

(b) En déduire que, pour tout n ∈ N∗ et tout P ∈ Rn[X] : 〈P,Hn〉 = 0.
(c) En déduire que, pour tout n ∈ N, la famille (H0, . . . , Hn) est orthogonale dans R[X].

10. Établir que, pour tout n ∈ N, la famille (H0, . . . , Hn) est une base de Rn[X].
11. Soit n ∈ N.

(a) Montrer que ‖Hn‖2 = 〈H(n)
n ,H0〉, où ‖ � ‖ est définie en 2.

(b) En déduire la valeur de ‖Hn‖.
12. On prend dans cette question n = 2.

(a) Donner une base orthonormée de R1[X]

(b) Déterminer, pour k ∈ J0, 2K2 〈Xk,H0〉 et 〈Xk,H1〉
(c) Donner la matrice dans la base (1, X,X2) de la projection orthogonale sur R1[X].
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Corrigé

Corrigé de l’exercice 1
1. Le cercle C a pour équation

(x+ 1)2 + y2 = 1

.
2. H(t) a pour coordonnées (2, 2t).

M(t) a des coordonnées de la forme (x, tx). De plus H(t) ∈ C d’où (x + 1)2 + t2x2 = 1 i.e.
(t2 + 1)x2 + 2x = 0.

Ainsi x = 0 ou x =
−2

t2 + 1
. Comme M(t) est distinct de O on en déduit que M(t) a pour coordonnées

(
−2

t2 + 1
,
−2t
t2 + 1

)
.

3. J(t) a pour coordonnées(
2 + −2

t2+1

2
,
2t+ −2t

t2+1

2

)
=

(
1− 1

t2 + 1
, t− −t

t2 + 1

)
=

(
t2

t2 + 1
,

t3

t2 + 1

)

Ainsi J(t) a pour coordonnées


x(t) =

t2

1 + t2

y(t) =
t3

1 + t2

4. La fonction t 7→ J(t) est dérivable sur R et on a, pour t ∈ R,

x′(t) =
2t(1 + t2)− 2t3

(1 + t2)2
=

2t

(1 + t2)2

y′(t) =
3t2(1 + t2)− 2t4

(1 + t2)2
=

t4 + 3t2

(1 + t2)2

Le vecteur dérivé à la courbe t 7→ J(t) est le vecteur de coordonnées 1

(1 + t2)2
(
2t, t4 + 3t2

)
.

On a J ′(t) = 0R2 si et seulement si t = 0.

Le point de paramètre 0 (i.e. le point O est l’unique point singulier de la courbe.
5. Soit t0 6= 0, la tangente à la courbe t 7→ J(t) au point J(t0) est dirigée par le vecteur J ′(t0)

donc, a fortiori par le vecteur de coordonnées (2, t0(t
2
0 + 3)).

Elle admet ainsi une équation de la forme t0(t
2
0 + 3)x− 2y = K où K ∈ R.

Or le point J(t0) appartient à la tangente, d’où

K = t0(t
2
0 + 3)

t20
t20 + 1

− 2
t30

t20 + 1

=
t20

t20 + 1

(
t30 + 3t0 − 2t0

)
=

t20
t20 + 1

t0
(
t20 + 1

)
= t30 De manière

plus conden-
sée, la tagente
à pour équation∣∣∣∣x− x(t0) x′(t0)
y − y(t0) y′(t0)

∣∣∣∣

Équation

Ainsi la tangente à la courbe t 7→ J(t) au point J(t0) a pour équation t0(t
2
0 + 3)x− 2y = t30.

6. On effectue un développement limité en t = 0.

x(t) =
t2

1 + t2
=

t→0
t2(1− t2 + o(t3)) = t2 − t4 + o(t5)
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y(t) =
t3

1 + t2
=

t→0
t3(1− t2 + o(t2)) = t3 − t5 + o(t5)

Ainsi (
x(t)
y(t)

)
=

t→0

(
0
0

)
+ t2

(
1
0

)
+ t3

(
0
1

)
Le point J(0) est un point de rebroussement de première espèce. La tangente en J(0) est

dirigée par le vecteur de coordonnées (1, 0).
7. Sur R+ on obtient le tableau de variations suivant :

t

x′(t)

x(t)

y(t)

y′(t)

0 +∞

0 +

00

11

00

+∞+∞

0 +

8. x est paire et y est impaire, ainsi on obtient le support de la courbe sur R− à partir du
support de la courbe sur R+ par symétrie orthogonale par rapport à l’axe des abscisses.
De plus la courbe admet en t→ +∞ et t→ −∞ une asymptote verticale d’équation x = 1.
On obtient le tracé suivant :
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Figure .1 – Tracé
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9. Soit t ∈ R, on a

x(t)(x(t)2 + y(t)2)− y(t)2 =
t2

t2 + 1

(
t4

(t2 + 1)2
+

t6

(t2 + 1)2

)
− t6

(t2 + 1)2

=
t6 + t8

(t2 + 1)3
− t6(t2 + 1)

(t2 + 1)3

= 0

Ainsi le support de la courbe t 7→ J(t) est inclus dans la courbe d’équation x(x2 + y2)− y2 = 0

10. Soit M(x, y) un point de la courbe d’équation x(x2 + y2)− y2 = 0.
Si x = 0 alors y = 0 et M(0, 0) = J(0).

Si x 6= 0 posons t = y

x
. On a alors x(x2+ t2x2)− t2x2 = 0, d’où x2(1+ t2)

(
x− t2

1 + t2

)
= 0.

Puisque x 6= 0, on a donc x =
t2

1 + t2
et y =

t3

1 + t2

Finalement, si M(x, y) vérifie x(x2 + y2)− y2) = 0 alors il existe un réel t tel que M(x, y) = J(t).

Réponse du problème 1 Partie I

On désigne par f l’endomorphisme de R3 dont la matrice dans la base canonique est donnée
par :

A =

 8 4 −7
−8 −4 8
0 0 1


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1. Déterminons le polynôme caractéristique de A

χA =

∣∣∣∣∣∣
X − 8 −4 7

8 X + 4 −8
0 0 X − 1

∣∣∣∣∣∣
= (X − 1)

∣∣∣∣X − 8 −4
8 X + 4

∣∣∣∣
= (X − 1)

∣∣∣∣X X
8 X + 4

∣∣∣∣ L1 ← L1 + L2

= (X − 1)X

∣∣∣∣1 1
8 X + 4

∣∣∣∣
= (X − 1)X

∣∣∣∣1 1
0 X − 4

∣∣∣∣L2 ← L2 − 8L1

= X(X − 1)(X − 4)

χA est scindé à racines simples donc A est diagonalisable.
2. Déterminons les vecteurs propres de A.

E1(A) = Ker

 7 4 −7
−8 −5 8
0 0 0

 = Vect

1
0
1


E0(A) = Ker

 8 4 −7
−8 −4 8
0 0 1

 = Vect

 1
−2
0


E4(A) = Ker

 4 4 −7
−8 −8 8
0 0 −3

 = Vect

 1
−1
0


On prend alors v1 = (1, 0, 1), v2 = (1,−2, 0), v3 = (1,−1, 0).

La matrice de f dans cette nouvelle base est

D =

1 0 0
0 0 0
0 0 4


3. D’après la formule de changement de base,

Am = MatBcan(fm)

= PBcan,(v1,v2,v3)Mat(v1, v2, v3)(f
m)P−1

Bcan,(v1,v2,v3)

= PDmP−1

Ainsi, pour tout m ∈ N∗ on a Am = PDmP−1 On aurait aussi pu
procéder par récur-
rence sur m

Méthode

4. On a P =

1 1 1
0 −2 −1
1 0 0


On inverse P par la méthode de Gauss-Jordan

 1 1 1 1 0 0
0 −2 −1 0 1 0
1 0 0 0 0 1


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 1 1 1 1 0 0
0 −2 −1 0 1 0
0 −1 −1 −1 0 1

 L3 ← L3 − L1 1 1 1 1 0 0
0 1 1 1 0 −1
0 −2 −1 0 1 0

 L2 ↔ L3 L2 ← −L2 1 1 1 1 0 0
0 1 1 1 0 −1
0 0 1 2 1 −2

 L3 ← L3 + 2L2 1 0 0 0 0 1
0 1 0 −1 −1 1
0 0 1 2 1 −2

 L1 ← L1 − L2 L2 ← L2 − L3

Ainsi P−1 =

 0 0 1
−1 −1 1
2 1 −2


On a ensuite

Am = PDmP−1

=

1 1 1
0 −2 −1
1 0 0

1 0 0
0 0 0
0 0 4m

 0 0 1
−1 −1 1
2 1 −2


=

1 0 4m

0 0 −4m
1 0 0

 0 0 1
−1 −1 1
2 1 −2


=

 24m 4m 1− 2× 4m

−2× 4m −4m 2× 4m

0 0 1



Ainsi la matrice de f dans la base canonique est

 24m 4m 1− 2× 4m

−2× 4m −4m 2× 4m

0 0 1

.

5. Soit N =

n1,1 n1,2 n1,3

n2,1 n2,2 n2,3

n3,1 n3,2 n3,3

 ∈M3(R), on a alors

ND =

n1,1 n1,2 n1,3

n2,1 n2,2 n2,3

n3,1 n3,2 n3,3

1 0 0
0 0 0
0 0 4

 =

n1,1 0 4n1,3

n2,1 0 4n2,3

n3,1 0 4n3,3



DN =

1 0 0
0 0 0
0 0 4

n1,1 n1,2 n1,3

n2,1 n2,2 n2,3

n3,1 n3,2 n3,3

 =

 n1,1 n1,2 n1,3

0 0 0
4n3,1 4n3,2 4n3,3



Les matrices qui commutent avec D sont ainsi les matrices de la forme

a 0 0
0 b 0
0 0 c

 avec (a, b, c) ∈ R3.

6. Soit H ∈M3(R) tel que H2 = D, alors HD = HH2 = H3 = H2H = DH.

Ainsi si H2 = D alors H et D commutent.
7. Soit H ∈ M3(R) vérifiant H2 = D. Alors, comme H et D commutent, H est de la formea 0 0

0 b 0
0 0 c

.

Ainsi H2 =

a2 0 0
0 b2 0
0 0 c2

 = D, d’où a ∈ {−1, 1}, b = 0 et c ∈ {−2, 2}.
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On vérifie facilement que ces matrices conviennent.
Les quatre matrices vérifiant H2 = D sont alors1 0 0

0 0 0
0 0 2

 −1 0 0
0 0 0
0 0 2

 1 0 0
0 0 0
0 0 −2

 −1 0 0
0 0 0
0 0 −2


8. Soit h un endomorphisme de R3 vérifiant h2 = f , alors sa matrice H dans la base (v1, v2, v3)

vérifie H2 = D.
Leurs matrices dans la base canonique sont alors les matrices PHP−1 où H est une des
quatre matrices obtenues précédemment.
Plus précisément ce sont les endomorphismes dont les matrices dans la base canonique sont 4 2 −3

−4 −2 4
0 0 1

  4 2 −5
−4 −2 4
0 0 −1

 −4 −2 5
4 2 −4
0 0 1

 −4 −2 3
4 2 −4
0 0 −1



Partie II

9. (a) On a J2 =

3 3 3
3 3 3
3 3 3


On montre ensuite par une récurrence simple que, pour tout entier m > 1, Jm = 3m−1J

(b) Soit m ∈ N∗. Travaillons avec les matrices A et J . On a A = J + I3. Comme J et I3
commutent, la formule du binôme donne

Am = (I3 + J)m =

m∑
k=0

(
m

k

)
Jk = I3 +

(
m∑

k=1

(
m

k

)
3k−1

)
J = I3 +

1

3
(4m − 1)J

Ainsi, pour tout m ∈ N∗, fm = Id +
1

3
(4m − 1)j.

Comme Id = Id la relation est encore valable pour m = 0 .

10. On a, après calcul, χA = (X−1)2(X−4). Donc f admet les deux valeurs propres distinctes λ = 1 et µ = 4.

11. D’après la question 9.(b)., pour tout entier m > 0, on peut écrire fm = 1m(Id− 1

3
j)+4m(

1

3
j).

En posant p = Id− 1

3
j et q =

1

3
j, on obtient l’existence de la décomposition voulue .

Supposons maintenant qu’il existe une autre décomposition (p′, q′), alors Id = p′ + q′ (pour
m = 0) et f = p′ +4q′ (pour m = 1). Donc p′ =

1

3
(4Id− f) = p et q′ =

1

3
(f − Id) = q, ce qui

nous donne l’unicité.
Enfin, supposons qu’il existe deux réels a et b tels que ap + bq = 0L(R3). On a alors aId +
b− a

3
j = 0L(R3). Les endomorphismes Id et j étant libres on a ainsi a = 0 et a− b = 0 d’où

b = 0.

Finalement Il existe un unique couple (p, q) d’endomorphismes de R3 tel que pour tout entier m > 0, fm =
λmp+ µmq. De plus ces endomorphismes p et q sont linéairement indépendants.

12. On obtient, en utilisant les expressions de p et q trouvées à la question précédente :

p2 = p, q2 = q, p ◦ q = q ◦ p = 0

Soit maintenant h = αp+ βq tel que h2 = f . Alors

h2 = α2p+ β2q = f = p+ 4q.
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Comme (p, q) est une famille libre, cette égalité équivaut à α2 = 1 et β2 = 4.
Ainsi il y a 4 endomorphismes h solutions, ce sont

p+ 2q = Id +
1

3
j, p− 2q = Id− j, −p+ 2q = −Id + j, −p− 2q = −Id− 1

3
j

13. (a) La matrice A est symétrique réelle, d’après le théorème spectral elle est donc diagona-
lisable. Ainsi f est diagonalisable.

On détermine les sous-espaces propres de f :
E1(f) = Vect(w1, w2) avec w1 = (1,−1, 0) et w2 = (0, 1,−1),
E4(f) = Vect(w3) avec w3 = (1, 1, 1).
Donc (w1, w2, w3) est une base de R3 formée de vecteurs propres de f .

(b) Notons B = (w1, w2, w3). Alors :

D = MatB(f) =

1 0 0
0 1 0
0 0 4

 , MatB(p) =

1 0 0
0 1 0
0 0 0

 et MatB(q) =

0 0 0
0 0 0
0 0 1


14. (a) On peut prendre par exemple :

K =

(
0 1
1 0

)
et Y =

0 1 0
1 0 0
0 0 2


(b) Soit h l’endomorphisme de R3 dont la matrice dans la base B est Y . Comme Y 2 = D

ainsi h2 = f .

De plus h n’est pas combinaison linéaire de p et q , car Y n’est pas combinaison li-
néaire de leurs matrices dans la base B.

15. Soit h un endomorphismes de R3 tel que h2 = f et notons M sa matrice dans la base B.
Comme M2 = D alors en particulier M et D commutent. Ainsi, après calcul M est de la

forme

a b 0
c d 0
0 0 e

.

Notons N =

(
a b
c d

)
, on a alors M2 =

(
N2 02,1
01,2 4

)
N est ainsi la matrice d’une symétrie de R2, elle est donc diagonalisable. Soit Q ∈ GL2(R)
telle que QNQ−1 soit une matrice diagonale ∆.

Posons P =

(
Q 02,1
01,2 1

)
. On a P

(
Q−1 02,1
01,2 1

)
= I3 ainsi P est inversible.

De plus

PNP−1 =

(
Q 02,1
01,2 1

)(
N 02,1
01,2 e

)(
Q−1 02,1
01,2 1

)
=

(
QNQ−1 02,1
01,2 e

)
=

(
∆ 02,1
01,2 e

)

Ainsi N est diagonalisable et donc h est diagonalisable.

Partie III
16. (a) On a

(f − λId) ◦ (f − µId) = f2 − (λ+ µ)f + (λµ) Id

= λ2p+ µ2q − (λ+ µ)λp− (λ+ µ)µq + λµp+ λµq

= 0L(E)

Ainsi (f − λId) ◦ (f − µId) = 0L(E).
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(b) On a (f − λId) ◦ (f − µId) = (f − λId) ◦ (f − µId) = 0L(E) d’où

Im(f − µId) ⊂ Ker(f − λId) et Im(f − λId) ⊂ Ker(f − µId)

(c) Il suffit de prendre a =
1

µ− λ
et b =

−1
µ− λ

.

(d) Soit x ∈ E, on a alors x = a(f(x)− λx) + b(f(x)− µx)

Or f(x)−λx ∈ Im(f −λId) ⊂ Ker(f −µId) et f(x)−µx ∈ Im(f −µId) ⊂ Ker(f −λId).
Ainsi E = Ker(f − µId) + Ker(f − λId).
De plus Ker(f−µId) et Ker(f−λId) sont des espaces propres de f associés à des valeurs
propres distinctes, ils sont donc en somme directe.

D’où E = Ker(f − µId)⊕Ker(f − λId).

(e) On en déduit que f est diagonalisable et Sp(f) ⊂ {λ, µ}.
17. D’après la question 16., on a

0L(E) = (f − λId) ◦ (f − µId) = (µ− λ)q ◦ (λ− µ)p.

Comme λ 6= µ, on en déduit que q ◦ p = 0 .

De même, comme (f − µId) ◦ (f − λId) = 0, on trouve p ◦ q = 0 .

Enfin, comme Id = p + q, on obtient, en composant par p (resp. par q) : p = p2 (resp.

q = q2 ).
18. Comme λ et µ sont non-nuls, f n’admet pas la valeur propre 0. Donc Ker f = {0}, et comme

E est de dimension finie, f est un isomorphisme.

De plus, on a vu en 16. que f2− (λ+µ)f +(λµ) Id = 0L(E), i.e. f ◦ (f − (λ+ µ)Id) = −λµId.

D’où f−1 =
−1
λµ

(f−(λ+µ)Id). On remplace f et Id à l’aide de p et q, ce qui donne finalement

f−1 =
1

λ
p+

1

µ
q.

19. On va montrer par récurrence que, pour tout m ∈ Z, fm = λmp+ µmq.
Initialisation :
La relation fm = λmp+ µmq est vérifiée pour m = 0, 1, 2 d’après l’énoncé, et pour m = −1
d’après la question précédente.
Hérédité :
Soit m ∈ Z, on suppose que fm = λmp + µmq. Montrons qu’alors fm−1 = λm−1p + µm−1q
et fm+1 = λm+1p+ µm+1q.

Une telle récur-
rence nous permet
de prouver les cas
m > 0 et m 6 0 en
même temps mais il
aurait aussi été pos-
sible de rédiger deux
récurrences.

Récurrence

En composant par f = λp+ µq on obtient

fm+1 = (λp+µq)◦(λmp+µmq) = λm+1p2+µm+1q2+λµmp◦q+µλmq◦p = λm+1p+µm+1q

De même, en composant par f = λ−1p+ µ−1q on obtient

fm−1 = (λ−1p+µ−1q)◦(λmp+µmq) = λm−1p2+µm−1q2+λ−1µmp◦q+µ−1λmq◦p = λm−1p+µm−1q

Ce qui prouve la propriété voulue aux rangs m− 1 et m+ 1 et achève la récurrence

On a donc montré que ∀m ∈ Z, fm = λmp+ µmq.
20. Soient deux réels α et β tels que αp+ βq = 0.

En composant par p, on obtient αp = 0 donc α = 0 puisque p 6= 0. De même, en composant
par q, on obtient β = 0.

Donc (p, q) est une famille libre et dim(F ) = 2 .
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21. Soit h ∈ R(f) ∩ F . Alors il existe (α, β) ∈ R2 tel que h = αp+ βq et h2 = f

Or, comme p ◦ q = q ◦ p = 0, h2 = α2p+ β2q = f = λp+ µq.
Comme (p, q) est une famille libre, on en déduit que α2 = λ et β2 = µ.
On obtient 4 possibilités, qui, réciproquement, conviennent toutes.
Par conséquent,

R(f) ∩ F = {
√
λp+

√
µq,
√
λp−√µq,−

√
λp+

√
µq,−

√
λp−√µq}

22. Définissons la matrice K diagonale par blocs de la façon suivante :

K =

 0 1
1 0

Ik−2


Un produit par blocs nous donne alors K2 = Ik .

23. On va raisonner matriciellement.
Appelons k l’ordre de multiplicité de la valeur propre λ (k > 2) et considérons une base B
de E formée de vecteurs propres de f . C’est également une base formée de vecteurs propres
de p et de q car p =

1

λ− µ
(f − µId) et q =

1

µ− λ
(f − λId).

De plus, dans la base B, leurs matrices sont des formes suivantes

MatB(f) =

(
λIk 0

0 µIn−k

)
, MatB(p) =

(
Ik 0

0 0n−k

)
et MatB(q) =

(
0k 0

0 In−k

)
.

Soit alors p′ l’endomorphisme dont la matrice dans la base B est :

M =

(
K 0

0 0n−k

)
où la matrice K ∈Mk(R) a été définie à la question précédente.
De plus,
• un produit par blocs donne M2 = MatB(p), donc p′2 = p,
• des produits par blocs donnent MMatB(q) = MatB(q)M = 0n, donc p′ ◦ q = q ◦ p′ = 0n,
• comme M n’est pas diagonale, p′ /∈ F = Vect(p, q).

L’endomorphisme p′ ainsi construit vérifie p′ ∈ L(E) \ F , p′2 = p et p′ ◦ q = q ◦ p′ = 0L(E).
24. Si dim(E) > 3, alors λ ou µ est d’ordre au moins 2. Supposons par exemple que c’est λ.

Posons h =
√
λp′ +

√
µq, où p′ est l’endomorphisme défini à la question précédente.

On a alors h2 = λp+µq = f par propriétés de p′ et q, et pourtant h /∈ F car p′ /∈ F et λ 6= 0.

Ainsi, si dim(E) > 3, alors R(f) 6⊂ F .

Réponse du problème 2

Partie I — Un produit scalaire sur E

1. Soit (α, β) ∈ R2, alors (α− β)2 > 0, c’est-à-dire α2 − 2αβ + β2 > 0 D’où

∀(α, β) ∈ [0,+∞[2 αβ 6 1

2
(α2 + β2)

2. Soit f et g deux fonctions continues sur R∗
+ à valeurs réelles telles que les intégrales

∫ +∞

0

f(t)2e−t2 dt

et
∫ +∞

0

g(t)2e−t2 dt convergent.
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On sait que
∀(α, β) ∈ [0,+∞[2 αβ 6 1

2
(α2 + β2)

Ainsi, en appliquant ce résultat à |f | et |g| on obtient

∀t ∈ R, 0 6 |f(t)g(t)e−t2 | 6 f(t)2 + g(t)2

2
e−t2

et donc
∀t ∈ R, 0 6 |f(t)g(t)| 6 f(t)2 + g(t)2

2

Or l’intégrale
∫ +∞

−∞

f(t)2 + g(t)2

2
e−t2 dt converge, donc par théorème de comparaison pour les

intégrales des fonctions positives on en déduit que l’intégrale
∫ +∞

−∞
|f(t)g(t)e−t2 | dt converge.

Ainsi l’intégrale
∫ +∞

−∞
f(t)g(t)e−t2 dt est absolument convergente donc convergente .

3. (a) La fonction constante égale à 0 appartient à E donc E 6= ∅.

Soit λ ∈ R et (f, g) ∈ E2. Alors f + λg est bien continue et on a (f(t) + λg(t))
2
=

f(t)2 + 2λf(t)g(t) + λ2g(t)2.

Or les intégrales
∫ +∞

−∞
f(t)2 dt,

∫ +∞

−∞
f(t)g(t) dt et

∫ +∞

−∞
g(t)2 dt sont convergentes ainsi

l’intégrale
∫ +∞

−∞
(f(t) + λg(t))

2 dt converge et donc f + λg ∈ E.

Finalement E est un sous-espace vectoriel de C0(R) et donc un espace vectoriel.

(b) Notons d’abord que si f et g sont deux éléments de E, alors
∫ +∞

−∞
f(x)g(x)e−x2

dx

converge donc 〈f, g〉 est bien définie et prend des valeurs réelles
• Soit λ un réel et soit f , g et h trois éléments de E. Alors

〈f, g + λh〉 =
∫ +∞

−∞
f(x) (g(x) + λh(x))e−x2

dx

=

∫ +∞

−∞
f(x)g(x)e−x2

+ λf(x)h(x)e−x2

dx

=

∫ +∞

−∞
f(x)g(x)e−x2

dx+ λ

∫ +∞

−∞
f(x)h(x)e−x2

dx

= 〈f, g〉+ λ〈f, h〉

Ainsi l’application (f, g) 7→ 〈f, g〉 est linéaire à droite
• Soit f et g deux éléments de E, on a alors

〈f, g〉 =
∫ +∞

−∞
f(x)g(x)e−x2

dx =

∫ +∞

−∞
g(x)f(x)e−x2

dx = 〈g, f〉

Ainsi l’application (f, g) 7→ 〈f, g〉 est symétrique, comme elle est linéaire à droite
elle est donc aussi linéaire à gauche.
• Soit f ∈ E, on a

∀x ∈ R, f(x)2e−x2 > 0

Ainsi, par positivité de l’intégrale, on a

〈f, f〉 =
∫ +∞

−∞
f(x)2e−x2

dx > 0

Ainsi l’application (f, g) 7→ 〈f, g〉 est positive
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• Soit f ∈ E telle que 〈f, f〉 = 0. On sait que

∀x ∈ R, f(x)2e−x2 > 0

et que la fonction x 7→ f(x)2e−x2

est continue sur R.
Une fonction continue et positive d’intégrale nulle est nulle sur l’intervalle d’inté-
gration, ainsi

∀x ∈ R, f(x)2e−x2

= 0

D’où, comme l’exponentielle ne s’annule jamais

∀x ∈ R, f(x) = 0

C’est-à-dire f = 0E .
Ainsi l’application (f, g) 7→ 〈f, g〉 est définie positive.

Finalement l’application (f, g) 7→ 〈f, g〉 est bien un produit scalaire sur E.

4. Soit k ∈ N, Montrons que x 7→ xk appartient à E.

Tout d’abord x 7→ xk est continue sur R. Montrons maintenant que
∫ +∞

−∞

(
xk
)2

e−x2

dx
converge.

La fonction x 7→
(
xk
)2

e−x2

étant continue sur R, l’intégrale n’est impropre qu’en −∞et +∞

On a lim
x→+∞

(
x2
(
xk
)2

e−x2
)
) = 0 par croissances comparées.

Ainsi
(
xk
)2

e−x2

=
x→+∞

(
1

x2

)
De plus, pour x > 1 on a

(
xk
)2

e−x2 > 0 et 1

x2
> 0 ;

Enfin l’intégrale
∫ +∞

1

1

x2
converge par critère de Riemann

Les règles de comparaison sur les intégrales généralisées de fonctions positives nous donnent
alors la convergence de

∫
1

+∞
(
xk
)2

e−x2

dx donc la convergence de
∫
0

+∞
(
xk
)2

e−x2

dx

Comme la fonction x 7→
(
xk
)2

e−x2

est paire sur R, l’intégrale
∫
−∞

0
(
xk
)2

e−x2

dx converge

également.

Si f est paire alors∫ +∞

0

f(x) dx et∫ 0

−∞
f(x) dx ont

même nature et
même valeur si elles
convergent

Remarque

Ainsi
∫
−∞

+∞
(
xk
)2

e−x2

dx converge.

On a donc montré que
∀k ∈ N, x 7→ xk ∈ E

Or E est un espace vectoriel donc toute combinaison linéaire d’éléments de E est encore un
élément de E. En particulier toute fonction qui peut s’écrire comme combinaison linéaire de
fonctions de la forme x 7→ xk appartient à E.

On en déduit donc que toute fonction polynomiale appartient à E, c’est-à-dire F est contenu dans E.

Partie II — Polynômes d’Hermite
5. On a

∀x ∈ R, w(x) = e−x2

Ainsi
∀x ∈ R, w′(x) = −2x e−x2

∀x ∈ R, w′′(x) = −2 e−x2

+ (−2x)2 e−x2

= (4x2 − 2) e−x2
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∀x ∈ R, w′′′(x) = 8x e−x2

+ (4x2 − 2) (−2x) e−x2

= (−8x3 + 12x) e−x2

.
On en déduit que

∀x ∈ R, H1(x) = −ex
2 (
− 2x e−x2)

= 2x

∀x ∈ R, H2(x) = ex
2 (

(4x2 − 2) e−x2)
= 4x2 − 2

∀x ∈ R, H3(x) = −ex
2 (

(−8x3 + 12x) e−x2)
= 8x3 − 12x

Finalement

∀x ∈ R, H1(x) = 2x, H2(x) = 4x2 − 2 et H3(x) = 8x3 − 12x.

6. (a) Soit n ∈ N, on a
∀x ∈ R, Hn(x) = (−1)n ex

2

w(n)(x)

En dérivant on obtient :

∀x ∈ R, H ′
n(x) = (−1)n (2x) ex

2

w(n)(x)+(−1)n ex
2

w(n+1)(x) = 2xHn(x)−(−1)n+1 ex
2

w(n+1)(x)

Ainsi
∀x ∈ R, H ′

n(x) = 2xHn(x)−Hn+1(x)

ou encore
∀x ∈ R, Hn+1(x) = 2xHn(x)−H ′

n(x)

Ainsi
∀n ∈ N, ∀x ∈ R, Hn+1(x) = 2xHn(x)−H ′

n(x)

(b) On procède par récurrence sur n.
On sait déjà que H0 est un polynôme de de degré 0.
Soit n ∈ N, on suppose que Hn est un polynôme de degré n. Ainsi H ′

n est un polynôme
de degré n− 1. On sait que Hn+1 = 2XHn −H ′

n,

Si P et Q sont deux
polynômes on a
deg(P +Q) 6
max(deg(P ), deg(Q)).
Il y a égalité si
deg(P ) ̸= deg(Q)
mais pas en général

4! Attention

on a deg(2XHn) = n+1 > deg(H ′
n) ainsi deg(Hn+1) = n+1 ce qui prouve la propriété

au rang n+ 1 et achève la récurrence

Ainsi Pour n ∈ N, Hn est un polynôme de degré n.
(c) Soit x un réel. on a H0 = 1, alors

H1 = 2XH0 −H ′
0 = 2X

H2 = 2XH1 −H ′
1 = 2X × (2X)− 2 = 4X2 − 2

H3 = 2XH2 −H ′
2 = 2X(4X2 − 2)− 8X = 8X3 − 12X

H4 = 2XH3 −H ′
3 = 2X(8X3 − 12X)− (24X2 − 12) = 16X4 − 48X2 + 12

Nous avons ainsi retrouvé les résultats de la question 6., de plus :

∀x ∈ R, H4(x) = 16x4 − 48x2 + 12

7. Pour n ∈ N, notons an le coefficient du terme de plus haut degré de Hn. Montrons par
récurrence que an = 2n

Initialisation :
Pour n = 0 on a a0 = 1 = 20

Hérédité :
Soit n ∈ N, on suppose que an = 2n. On peut donc écrire Hn = 2nXn+Q avec deg(Q)leqslantn−
1.
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On a alors
Hn+1 = 2XHn −H ′

n = 2n+1Xn+1 + 2XQ−H ′
n

Or deg(2XQ − H ′
n) 6 max(deg(2XQ), deg(H ′

n) 6 n. Ainsi le monôme de degré n + 1 de
Hn+1 est 2n+1Xn+1 et donc le coefficient de degré n+ 1 de Hn+1 est 2n+1 ce qui prouve la
propriété au rang n+ 1 et achève la récurrence.

8. On va montrer par récurrence sur n la propriété

P(n) : ∀x ∈ R, Hn(−x) = (−1)nHn(x)

Initialisation :
Pour n = 0 on a bien H0(−x) = 1 = (−1)0Hn(x)

Hérédité :
Soit n ∈ N, on suppose que

∀x ∈ R, Hn(−x) = (−1)nHn(x)

En dérivant on a alors
∀x ∈ R, −H ′

n(−x) = (−1)nH ′
n(x)

D’où
∀x ∈ R, H ′

n(−x) = (−1)n+1H ′
n(x)

Soit x ∈ R, on a

Hn+1(−x) = 2(−x)Hn(−x)−H ′
n(−x)

= −2(−1)nHn(x)− (−1)n+1H ′
n(x)

= −(1)n+1 (2xHn(x)−H ′
n(x))

= −(1)n+1Hn+1(x)

Ce qui prouve la propriété au rang n+ 1 et achève la récurrence.
On a donc

∀n ∈ N, ∀x ∈ R, Hn(−x) = (−1)nHn(x)

On en déduit que Hn est une fonction paire si n est pair et Hn est une fonction impaire si n est impair.

Partie III — Lien entre le produit scalaire et les polynômes d’Hermite
9. (a) Soit P ∈ F et soit A < 0 et B > 0, on a∫ B

A

P ′(x)Hn−1(x)e
−x2

dx =

∫ B

A

P ′(x)(−1)n−1ex
2

w(n−1)(x)e−x2

dx

= (−1)n−1

∫ B

A

P ′(x)w(n−1)(x) dx

= (−1)n−1
[
P (x)w(n−1)(x)

]B
A
+ (−1)n

∫ B

A

P (x)w(n)(x) dx

= (−1)n−1
[
P (x)Hn−1(x)e

−x2
]B
A
+

∫ B

A

P (x)Hn(x)e
−x2

dx

= (−1)n−1
[
P (x)Hn−1(x)e

−x2
]B
A
+

∫ B

A

P (x)Hn(x)e
−x2

dx

Notons d le degré de P , on a alors P (x)Hn−1(x)e
−x2

∼
x→+∞

xdxn−1e−x2

et P (x)Hn−1(x)e
−x2

∼
x→−∞

xdxn−1e−x2

Or, par croissance comparées, lim
x→+∞

xdxn−1e−x2

= 0 et lim
x→−∞

xdxn−1e−x2

= 0, d’où

lim
x→+∞

P (x)Hn−1(x)e
−x2

= 0 et lim
x→−∞

P (x)Hn−1(x)e
−x2

= 0

On a donc
lim

A→−∞, B→+∞
(−1)n−1

[
P (x)Hn−1(x)e

−x2
]B
A
= 0
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De plus

lim
A→−∞, B→+∞

∫ B

A

P ′(x)Hn−1(x)e
−x2

dx = 〈P ′,Hn−1〉

lim
A→−∞, B→+∞

∫ B

A

P (x)Hn(x)e
−x2

dx = 〈P,Hn〉

Finalement on a bien

∀n ∈ N∗, ∀P ∈ F, 〈P ′,Hn−1〉 = 〈P,Hn〉

(b) Soit P ∈ Fn−1, en itérant la formule précédente on obtient

〈P,Hn〉 = 〈P ′,Hn−1〉 = 〈P ′′,Hn−2〉 = · · · = 〈P (n),H0〉

Or, deg(P ) 6 n− 1 donc P (n) = 0 et donc 〈P (n),H0〉 = 0.
Ainsi

∀P ∈ Fn−1, 〈P,Hn〉 = 0

(c) Soit n ∈ N, et soit (i, j) ∈ J1, nK2, avec i 6= j, supposons pour fixer les idées que i < j, on
a alors i 6 j − 1 et donc Hi ∈ Fj−1, ainsi, d’après le question précédente 〈Hi,Hj〉 = 0.

La famille (H0, · · · ,Hn) est donc bien une famille orthogonale
10. La famille (H0, · · · ,Hn) est donc une famille orthogonale qui ne contient pas le polynôme

nul, ainsi c’est une famille libre. De plus c’est une famille libre de cardinal n+1 dans Fn qui
est un espace vectoriel de dimension n+ 1, c’est donc une base de Fn.

11. Soit n ∈ N .
(a) On a vu précédemment que, pour P ∈ F on a

〈P,Hn〉 = 〈P ′,Hn−1〉 = 〈P ′′,Hn−2〉 = · · · = 〈P (n),H0〉

En particulier pour P = Hn on obtient

‖Hn‖2 = 〈Hn,Hn〉 = 〈H(n)
n ,H0〉

(b) On a
‖Hn‖2 = 〈H(n)

n ,H0〉

Or H0 = 1 et Hn est un polynôme de degré exactement n de coefficient dominant 2n,
ainsi H(n)

n = n!2n. On a donc

‖Hn‖2 = 〈n!2n, 1〉 = n!2n

Ainsi
‖Hn‖ =

√
n!2n

12. (a) La famille (H0,H1) est une base orthogonale de R1[X]. Il nous suffit de la renormaliser

D’après la question précédente ‖H0‖ = 1 et ‖H1‖ =
√
2.

Ainsi la famille
(

H0

‖H0‖
,

H1

‖H1‖

)
=
(
1,
√
2X
)

est une base orthonormée de R1[X].

(b) Soit k ∈ J0, 2K2, on a
〈1,H0〉 = 1, 〈X,H0〉 = 0

〈X2,H0〉 = 〈
1

4
(H2 + 2H0),H0〉 =

1

2

Et

〈1,H1〉 = 0, 〈X,H1〉 =
1

2
‖H1‖2 = 1

〈X2,H1〉 = 〈
1

4
(H2 + 2H0),H1〉 = 0
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(c) Soit Q ∈ R2[X], on sait que

pR1[X](Q) = 〈Q,H0〉H0 + 〈Q,
H1

‖H1‖
〉 H1

‖H1‖
= 〈Q,H0〉H0 +

1

2
〈Q,H1〉H1

En notant Q = aX2 + bX + c on a ainsi

pR1[X](Q) =
a+ 2c

2
H0 +

b

2
H1 = bX +

a+ 2c

2

On en déduit que

Comme pR1[X]

est l’identité sur
R1[X] il suffisait en
fait de déterminer
pR1[X](X

2)

Calcul

Mat(1,X,X2)(pR1[X]) =

1 0
1

2
0 1 0
0 0 0


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