Lycée La Martiniére Monplaisir PT

2025-2026

Devoir sur Table 4

Durée : 4h

e Les exercices sont indépendants. Ils peuvent étre traités dans un ordre quelconque.
e Tous les documents sur papier sont interdits.

e Les calculatrices ne sont pas autorisées.

e Le matériel de géométrie (régle, compas, équerre) est autorisé.

e La notation des copies tiendra compte dans une large mesure de la qualité de la rédac-
tion. Ceci implique que vous devez faire des raisonnements clairs, concis et complets,
utiliser un langage mathématiques adapté et précis, étre lisible et éviter les fautes
d’orthographe et de grammaire.

e Si, au cours du devoir, vous repérez ce qui vous semble étre une erreur d’énoncé, vous
le signalez sur votre copie et poursuivez sa composition en expliquant les raisons des
initiatives que vous avez été amené a prendre.

e Mettez en évidence vos résultats en les encadrant.
e Conformément au reglement de la Banque PT

— Composer lisiblement sur les copies avec un stylo a bille a encre foncée : bleue
ou noire.

— L’usage de liquide de correction et dérouleur de ruban correcteur est interdit.

Le soin apporté a la copie fera ’objet d’une évaluation suivant les criteres suivants :
— Mise en évidence des résultats

— Soin et lisibilité de la copie. En particulier les traits, y compris pour les ratures,
devront étre tracés a ’aide d’une regle

— Respect des consignes concernant le liquide de correction et le dérouleur de ruban
correcteur

— Respect de la grammaire et de 'orthographe

Exercice 1 thde de la cissoide droite
(adapté de Ecole de I’Air MP 2002)

On désigne par D la droite d’équation x = 2 et par C' le cercle de centre My(—1,0), de rayon

Pour tout nombre réel ¢, on désignera par :

— H(t) le point d’intersection de la droite d’équation y = tx et de la droite D.

— M(t) le point d’intersection de la droite d’équation y = tz et du cercle C (avec la convention
que lorsqu’il y a deux points d’intersection, M (t) désigne le point d’intersection distinct de

0).

1. Donner une équation cartésienne du cercle C.
2. Déterminer les coordonnées de M (t) et H(t).

On note J(t) le milieu J(t) du segment [M(t), H(t)].

t2
z(t) = T
3. Vérifier que J(t) a pour coordonnées +
t) =
y(®) 1+ ¢2

4. Déterminer le vecteur dérivé & la courbe ¢t — J(¢), puis en déduire les points stationnaires
(c’est-a-dire non réguliers) de celle-ci.

5. En déduire que, pour ty # 0, la tangente & la courbe t — J(t) au point J(¢) a pour équation
to(t2 +3)x — 2y = t3.
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6. Etudier la nature du point J(0).

7. Dresser le tableau des variations des coordonnées z(t), y(¢t) du point J(t) pour t € Ry

8. Représenter sur une méme figure sur le papier millimétré joint, la droite D, le cercle C, et le
support de cette courbe t — J(t).

9. Montrer que le support de la courbe ¢ — J(t) est inclus dans la courbe d’équation x(:c2 +
y’) —y?=0.

10. Réciproquement soit M (z,y) un point de la courbe d’équation x(m2 + yz) —y? = 0. Montrer

qu’il existe un réel ¢ tel que M (x,y) = J(t).

Probleme 1 Racines carrées d’un endomorphisme
(adapté de CCINP PC 2010)

Dans tout ce probléme, n est un entier naturel supérieur ou égal a 2 et E est un R-espace
vectoriel de dimension fine n

Si f € L(F) on notera :
R(f)={h e L(E), h* = [}

L’objectif du probléme est d’étudier des conditions nécessaires ou suffisantes a l'existence de
racines carrées d’un endomorphisme f et de décrire dans certains cas 'ensemble R(f).

Partie I

On désigne par f 'endomorphisme de R® dont la matrice dans la base canonique est donnée
par :

8§ 4 =7
A=1-8 -4 8
0 0 1

1. Montrer que f est diagonalisable.
2. Déterminer une base (v1,vs,v3) de R?® formée de vecteurs propres de f et donner la matrice
D de f dans cette nouvelle base.

3. Soit P la matrice de passage de la base canonique a la base (v1, v2, v3) et soit m € N*. Sans
calculer Vinverse de P, exprimer A™ en fonction de D, P et P~ 1.

4. Calculer P™1, puis déterminer la matrice de f™ dans la base canonique

5. Déterminer toutes les matrices de M3(R) qui commutent avec la matrice D trouvée a la
question 2..

6. Montrer que si H € M3(R) vérifie H> = D, alors H et D commutent.

7. Déduire de ce qui précéde toutes les matrices H de M3(R) vérifiant H 2=D,

8. Déterminer tous les endomorphismes h de R? vérifiant h2 = f en donnant leur matrice dans
la base canonique.

Partie 11

Soit f et j les endomorphismes de R? dont les matrices respectives A et J dans la base canonique
sont données par :

2 11 1 1 1
A=11 2 1] etJ=(1 1 1
1 1 2 1 1 1
9. (a) Calculer J™ pour tout entier m > 1.

(b) En déduire que pour tout m € N*, f™ =1d + %(4m —1)j. Cette relation est-elle encore
valable pour m =07

10. Montrer que f admet deux valeurs propres distinctes A et p telles que A < pu.

11. Montrer qu’il existe un unique couple (p, q) d’endomorphismes de R? tel que pour tout entier
m = 0, f™ = A"p + pu™q et montrer que ces endomorphismes p et ¢ sont linéairement
indépendants.

12. Apres avoir calculé p?, ¢%, po q et g o p, trouver tous les endomorphismes h combinaisons
linéaires de p et g qui vérifient h? = f.

12 décembre 2025 2 Bastien Marmeth



Lycée La Martiniére Monplaisir PT

2025-2026

13. (a) Montrer que f est diagonalisable et trouver une base de vecteurs propres de f.
(b) Ecrire la matrice D de f, puis la matrice de p et de ¢ dans cette nouvelle base.

14. (a) Déterminer une matrice K de Mo (R) non diagonale telle que K? = I, puis une matrice
Y de M3(R) non diagonale telle que Y2 = D.

(b) En déduire qu’il existe un endomorphisme h de R? vérifiant h? = f qui n’est pas
combinaison linéaire de p et q.
15. Montrer que tous les endomorphismes h de R? vérifiant h2 = f sont diagonalisables.

Partie II1

Soit f un endomorphisme de E. On suppose qu’il existe (A, u) € R? et deux endomorphismes
non nuls p et ¢ de E tels que :

ld=p+gq
AFpet ¢ f=Ap+puq
12 =Np+pPq.

a) Calculer (f — AId) o (f — pId).
b) Montrer que Im(f — pId) C Ker(f — AId) et Im(f — AId) C Ker(f — plId)
(c) Déterminer deux réels a et b tel que a(X — A) +b(X —u) =1
(d) Montrer que E = Ker(f — A\Id) @ Ker(f — pId)
(e) Qu’en déduit-on sur f?
17. Déduire de la relation trouvée dans la question 16.(a) que po g = qop = O (g) puis montrer
que p* =pet ¢> =gq.
On suppose jusqu’a la fin de cette partie que A > 0 et p > 0.

16. (
(

18. Montrer que f est un isomorphisme et écrire f~! comme combinaison linéaire de p et g.

19. Montrer que pour tout m € Z : f™ = \"p+ u"q

20. Soit F' le sous-espace de L(FE) engendré par p et g. Déterminer la dimension de F.

21. Déterminer R(f) N F.

22. Soit k un entier supérieur ou égal a 2. Déterminer une matrice K de My (R) non diagonale
et vérifiant K2 = I;.

23. Montrer que si l'ordre de multiplicité de la valeur propre A est supérieur ou égal a 2, alors il
existe un endomorphisme p’ € L(E) \ F tel que P> =petpog=qop = 0z(E)-

24. En déduire que si dim(E) > 3, alors R(f) ¢ F'.

Probléme 2
(adapté de EML ECS 2008)

On confond polynoéme et application polynomiale de R dans R.

On note E l'ensemble des applications v : R — R, continues sur R et telles que 'intégrale

+oo 5 5
/ (u(x))”e™® dx converge.

—0o0
On note, pour tout n € N, F;, le R-espace vectoriel des applications polynomiales de R dans R,
de degré inférieur ou égal a n.

On admet que

“+o0
vm € R, / e~ @=m* qp = /1

Partie I —  Un produit scalaire sur £

1. Etablir que

1
(. B) € 0,400 aB < (a®+ %)
+o0 5
2. En déduire que, pour tout (u,v) € E?, 'intégrale / u(z)v(xz)e™ da converge.
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I
On note (s, .) I'application de E? dans R qui, & tout (u,v) € E?, associe 7 / u(x)v(ac)e*”:2 dz.
™ — 00

1
On notera la présence du facteur —.
VT
3. (a) Démontrer que E est un R-espace vectoriel.
(b) Montrer que l'application (.,.) est un produit scalaire sur E.

4. Démontrer que R[X] C E.

On note encore (,.) la restriction & R[X] ou & R, [X], pour n € N, du produit scalaire (,.)
sur E. On admet que cette restriction est encore un produit scalaire sur R[X] ou sur R, [X].
On note ||+ ] la norme sur E associée au produit scalaire (,,.), définie, pour tout u € FE,
par :[lull = v/(u, u)
Partie I —  Polynomes d’Hermite

On note w 'application de R dans R, de classe C*, définie pour tout € R par w(z) = e

Pour tout n € N, on note H,, 'application de R dans R définie pour tout € R par

H,(x) = (—1)"612111(") (z), ot w™ désigne la dérivée n-iéme de w.

En particulier : Hy = 1.
5. Calculer, pour tout x € R, Hy(z), Ha(z), Hs(x) On fera figurer les calculs sur la copie.
(a) Montrer, pour tout n € N et tout x € R :

b

Hyr(2) = 20H, () — H} (x)

(b) En déduire que, pour tout n € N, H,, est un polynéme de degré n.
(¢) Controler alors les résultats obtenus en 5. et calculer Hy On fera figurer les calculs sur
la copie.
7. Déterminer, pour tout n € N, le coefficient du terme de plus haut degré de H,,.
8. Montrer, pour tout n € Net tout t € R: H,(—z) = (—=1)"H,(x).

Qu’en déduit-on, en terme de parité, pour 'application H,, ?

Partie IIl  —  Lien entre le produit scalaire et les polynomes d’Hermite
9. (a) Montrer, pour tout n € N* et tout P € R[X]

(P' H, 1) = (P Hp,)

ol (s, .) est le produit scalaire sur F' défini en 2..
On pourra effectuer une intégration par parties
(b) En déduire que, pour tout n € N* et tout P € R,,[X]: (P, H,)=0.
(¢) En déduire que, pour tout n € N, la famille (Hy, ..., H,) est orthogonale dans R[X].
10. Etablir que, pour tout n € N, la famille (Hy, ..., H,) est une base de R,,[X].
11. Soit n € N.
(a) Montrer que ||H,||> = (H™, Hy), ot || . || est définie en 2.
(b) En déduire la valeur de ||H,]|.
12. On prend dans cette question n = 2.
(a) Donner une base orthonormée de R;[X]
(b) Déterminer, pour k € [0,2]* (X*, Hy) et (X* H,)
(¢) Donner la matrice dans la base (1, X, X?) de la projection orthogonale sur R;[X].
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Corrigé
Corrigé de I’exercice 1
1. Le cercle C a pour équation
(@+1)2+y?=1]
2. ‘H(t) a pour coordonnées (2, 2t). ‘
M (t) a des coordonnées de la forme (z,tz). De plus H(t) € C d’on (x + 1)% + t?2% = 1 i.e.
(t* + 1)a® + 22 = 0.
Ainsiz = 0 2 M (t) est distinct de O déduit que | M (t) donné B—
insiz = 0ouz = ——. Comme est distinct de O on en déduit que a pour coordonnées | ———, ——— |.
241 K P 2+12+1

3. J(t) a pour coordonnées

2+ pfr 2t _ PR S 0 W A
2 72 24+1" 241 24+1782+1

2
W= 13

Ainsi | J(t) a pour coordonnées ;"3
)= ——
y() 1+ 2

4. La fonction ¢ — J(t) est dérivable sur R et on a, pour t € R,

2t(1 + t2) — 2¢3 2t
o = 2O 2
(1+2)? (1+2)?
32(1+¢2) — 2t t* 4 3¢2
y'(t) = ( ) =

(1+2)? (1+ )2

Le vecteur dérivé a la courbe t — J(t) est le vecteur de coordonnées

1
T ee (2t,t* + 3¢%).

On a J'(t) = Oge si et seulement si t = 0.

‘Le point de parameétre 0 (i.e. le point O est 'unique point singulier de la courbe. ‘

5. Soit tg # 0, la tangente a la courbe t — J(t) au point J(to) est dirigée par le vecteur J'(to)
donc, a fortiori par le vecteur de coordonnées (2,to(ta + 3)).

Elle admet ainsi une équation de la forme #o(¢5 + 3)x — 2y = K ot K € R.
Or le point J(tp) appartient a la tangente, d’ou

B, 1
B4+1 Tt2+1

=
[

to(tg +3)

B

£3 4 3to — 2t
t%+1<0jL 0~ 2o)
2

_ tO 2

=t

Ainsi| la tangente & la courbe ¢ ~ J(t) au point J(tg) a pour équation to(t3 + 3)x — 2y = 3. ‘ 4

6. On effectue un développement limité en ¢ = 0.

t2
- 1+¢2 th

x(t) t2(1 = >+ o(t?)) =t —t* + o(t%)

— Equation

De maniere

plus conden-

sée, la tagente

a pour équation
z—x(to) 2'(to)

y—y(to) o' (to)
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t 3 2 2 3 5 5
R t —t° 4ot t° —t t
1 2 t50 ( 0( )) 0( )

(36) = )+ () + ()

Le point J(0) est un point de rebroussement de premiére espéce. ‘ La tangente en J(0) est

y(t)

Ainsi

dirigée par le vecteur de coordonnées (1,0).
7. Sur Ry on obtient le tableau de variations suivant :

0
+o0o
y(t)
0
y'(t) 0 +

8. x est paire et y est impaire, ainsi on obtient le support de la courbe sur R_ a partir du
support de la courbe sur R, par symétrie orthogonale par rapport a l’axe des abscisses.

De plus la courbe admet en t — 400 et t — —o0 une asymptote verticale d’équation x = 1.

On obtient le tracé suivant :
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9.

10.

Figure .1 — Tracé

P
J

25 T

1.5 +

—25 — -1.5 —-1.0 -0.5 05 1,0 1.5 20 25
—0. .

—-1.5

—2.5 +

Soit t € R, on a

2 4 6 6
PO+ 90) v = ((t2 . RN . 1)2> NG ; )2

415 %P +1)

2+1)3  (t2+41)3

 (
=0

Ainsi‘ le support de la courbe t + J(t) est inclus dans la courbe d’équation x(x? + y*) —y* =0 ‘

Soit M (x,y) un point de la courbe d’équation z(x? + y*) — y* = 0.
Si z =0 alors y =0 et M(0,0) = J(0).
t2
Si x # 0 posons t = % On a alors x(z? +t22?) — t?2? = 0, d’ou 2*(1 +t?) (x > =0.
t? t3

T2 Y=

Pui 0 d =
uisque x # 0, on a donc x e

Finalement, | si M (z,y) vérifie z(2? 4+ y?) — y*) = 0 alors il existe un réel ¢ tel que M (z,y) = J(t).

Réponse du probléeme 1

On désigne par f 'endomorphisme de R?® dont la matrice dans la base canonique est donnée

par :

8§ 4 =7
A=1-8 -4 8
0 0 1
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1. Déterminons le polynéme caractéristique de A
X-8 -4 7
xa=| 8 X+4 -8
0 0 X -1
X-8 —4
=& -1 ’ 8 X+4 ‘
X X
1 1
- (XI)X'S X+4‘
—x—nx|b b e r—sE
= 0 X —4|™2 2 1
=X(X-1)(X -4
x4 est scindé a racines simples donc ’ A est diagonalisable. ‘
2. Déterminons les vecteurs propres de A.
7T 4 =7 1
E,(A) = Ker -8 -5 8 = Vect 0
o 0 0 1
8 4 -7 1
Ey(A)=Ker | | -8 —4 8 = Vect -2
0 o0 1 0
4 4 -7 1
E,(A) = Ker -8 -8 8 = Vect -1
0o 0 -3 0
On prend alors ‘ vy = (1,0,1), va = (1,-2,0), vz = (1, —1,0).‘
La matrice de f dans cette nouvelle base est
1 00
D=0 0 0
0 0 4
3. D’apres la formule de changement de base,
A™ = MatBean ()
- Pan,(vl,vg,vg)Mat(vla U2) U3)(fm)PB_C:(l”“(U17'U27U3)
=ppmp!
Méthode

Ainsi, pour tout m € N* on a|A™ = PD™P~! ‘

1 1 1
4. OnaP=|0 -2 -1
1 0 0

On inverse P par la méthode de Gauss-Jordan

1 1 1 (1 0 0
0 -2 —-1({0 1 0
1 0 010 01

On aurait aussi pu
procéder par récur-
rence sur m
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1 1 1 1 0 0
0 -2 -1 0 1 0 Ly <+ Ls— 14
0O -1 —-1|-1 0 1
1 1 111 0 O
0 1 1 1 0 -1 Lo <> Ly Lo+ —Lo
0 -2 —-1/0 1 O
1 1 1|11 0 O
01 1|1 0 -1 Ls « Ly + 2L,
0 0 112 1 -2
1 0 0] O 0 1
01 0f-1 -1 1 L+ Ly — Loy Lg(—LQ—Lg
00 1| 2 1 =2
0 0 1
Ainsi | P7'=|-1 -1 1
2 1 -2

On a ensuite

Am — PDmP—l

= | -2x4m™ —4m 2 x 4™
0 0 1

24™ 4m 12><4m)

24™ 4m 1 —-2x4"
Ainsi | la matrice de f dans la base canonique est [ —2 x 4™ —4™ 2 x 4™
0 0 1

ni1 Ni2 N13
5. Soit N = [na1 ngs nog | € Ms(R), on a alors
n31 MN32 N33

nii1 Ni2 N3 1 0 0 ni1 0 471173
ND = Nn21 MN22 N23 0 0 0] = n2.1 0 4”2’3
n31 N32 N33 0 0 4 n31 0 4ng3

1.0 0 ni1 N2 N3 ni1 M2 N3
DN = 0 0 O N21 N22 N23 = 0 0 0
0 0 4 n3gi1 MnN32 N33 4n3,1 4713,2 4’17,3’3

o ot O

0
0| avec (a,b,¢) € R%.
c

a
Les matrices qui commutent avec D sont ainsi les matrices de la forme [ 0
0

6. Soit H € M3(R) tel que H? = D, alors HD = HH? = H®> = H?*H = DH.

Ainsi ‘ si H? = D alors H et D commutent.
7. Soit H € M3(R) vérifiant H*> = D. Alors, comme H et D commutent, H est de la forme

a 0
0 b 0
0 0 ¢
a? 0 0
Ainsi H> =0 »* 0| =D,dotac{-1,1},b=0et cc {-2,2}.
0 0 ¢
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On vérifie facilement que ces matrices conviennent.

Les quatre matrices vérifiant H? = D sont alors

1 00 -1 0 0 1 0 O -1 0 O
0 0 0 0 0 0 00 O 0 0 O
0 0 2 0 0 2 0 0 2 0 0 -2

8. Soit i un endomorphisme de R® vérifiant h? = f, alors sa matrice H dans la base (v1, v2,v3)
vérifie H? = D.

Leurs matrices dans la base canonique sont alors les matrices PHP™! ot H est une des
quatre matrices obtenues précédemment.

Plus précisément ce sont les endomorphismes dont les matrices dans la base canonique sont

4 2 -3 4 2 -5 -4 -2 5 -4 -2 3
—4 -2 4 —4 -2 4 4 2 —4 4 2 4
0 0 1 0 0 -1 0 0 1 0 0 -1
Partie 11
3 3 3
9. (a) OnaJ*=1{3 3 3
33 3

On montre ensuite par une récurrence simple que, pour tout entier m > 1, J™ = 3m~1J

(b) Soit m € N*. Travaillons avec les matrices A et J. On a A = J + I3. Comme J et I3
commutent, la formule du binéme donne

A™ = (I + J)™ = zm: (’;:) JE =T+ (g (Z)?,’“—l) J=1Iy+ %(47” —1)J

k=0

1
Ainsi, | pour tout m € N*, f™ =1d + §(4m —1)j.

Comme Id = Id ‘ la relation est encore valable pour m =0 ‘

10. On a, aprés calcul, x4 = (X —1)%(X—4). Donc‘ f admet les deux valeurs propres distinctes A = 1 et u = 4.

1 1
11. D’apreés la question 9.(b)., pour tout entier m > 0, on peut écrire f™ = 1" (Id — gj)+4m(§j).

1 1
En posant p =1d — 3 jetqg= 3 j, on obtient I'existence de la décomposition voulue .

Supposons maintenant qu’il existe une autre décomposition (p’,q’), alors Id = p’ + ¢’ (pour
1 1

m=0)et f=p +4¢ (pour m =1). Donc p’ = §(4Id—f) =petq = g(f—ld) = ¢, ce qui

nous donne l'unicité.

Enfin, supposons qu’il existe deux réels a et b tels que ap + bg = O rsy. On a alors ald +

h—
3 aj = Oz (rs). Les endomorphismes Id et j étant libres on a ainsi a =0 et a —b =0 d’ou
b=0.
Finalement Il existe un unique couple (p,q) d’endomorphismes de R? tel que pour tout entier m > 0, f™ =

A™p + 1™ q. De plus ces endomorphismes p et ¢ sont linéairement indépendants.

12. On obtient, en utilisant les expressions de p et ¢ trouvées a la question précédente :

0’ =p, ¢ =q, pog=qop=0

Soit maintenant h = ap + Bq tel que h? = f. Alors

h*=a’p+ g =f=p+iq

12 décembre 2025 10 Bastien Marmeth



Lycée La Martiniére Monplaisir PT 2025-2026

13.

14.

15.

16.

Comme (p, q) est une famille libre, cette égalité équivaut & o = 1 et 5% = 4.

Ainsi il y a 4 endomorphismes h solutions, ce sont

1 1
p+2q:Id+§j, p—2¢=1d—j, —p+2¢=-Id+j, —p—2q:—Id—§j

(a) La matrice A est symétrique réelle, d’apres le théoréme spectral elle est donc diagona-

lisable. Ainsi ‘ f est diagonalisable. ‘

On détermine les sous-espaces propres de f :

E1(f) = Vect(wy,ws) avec wy = (1,—1,0) et wy = (0,1, —1),

E4(f) = Vect(ws) avec wg = (1,1,1).

Donc (wy,ws, w3) est une base de R? formée de vecteurs propres de f.
(b) Notons B = (wy, ws,ws). Alors :

1 0 0 1 0 0 0 0 O
D=Matp(f)=(0 1 0], Matg(p) =10 1 0 et Matp(q)=[0 0 0
0 0 4 0 0 O 0 0 1
(a) On peut prendre par exemple :
01 0
KZ(? (1)) et Y=1[1 00
0 0 2

(b) Soit h 'endomorphisme de R* dont la matrice dans la base B est Y. Comme Y2 = D

De plus ‘h n’est pas combinaison linéaire de p et ¢ ‘, car Y n’est pas combinaison li-

néaire de leurs matrices dans la base B.
Soit h un endomorphismes de R? tel que h? = f et notons M sa matrice dans la base B.

Comme M? = D alors en particulier M et D commutent. Ainsi, aprés calcul M est de la

a b 0
forme ¢ d O
0 0 e
_[a b 2 N2 02)1
Notons N = (c d)’ on a alors M“ = ( 02 | 4

N est ainsi la matrice d’une symétrie de R?, elle est donc diagonalisable. Soit Q € GLo (R)
telle que QNQ ™! soit une matrice diagonale A.

-1
Posons P = Q | 021 .OnaP @ 02,1 = I3 ainsi P est inversible.
0172 1 01,2 1

De plus
- Q |02,1>< N |021><Q_1|02A1> (QNQ_1|021) ( A 021>
PNP 1= : : = : = :
( 0172 | 1 0172 | (& 0172 | 1 01,2 | e 0172 &

Ainsi N est diagonalisable et donc ‘ h est diagonalisable. ‘

Partie 111
(a) On a
(f = Ald) o (f — pId) = f2 — (A + 1) f + (\a) Td

= Np+pPq— (A4 w)Ap — (A + p)ug + Aup + Aug
=0cm)

Ainsi| (f = Ald) o (f — pId) = 0. \
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17.

18.

19.

20.

(b) Ona (f — Ald) o (f — pld) = (f — Ald) o (f — pId) = O () dot

| Im(f — pld) C Ker(f — AId) et Im(f — Md) C Ker(f — pu1d) |

(c) Il suffit de prendre |a = . i 3 et b= M;—l/\
(d) Soit x € E, on a alors x = a(f(x) — Az) + b(f(x) — px)
Or f(z)— Az € Im(f — A\Id) C Ker(f —puld) et f(z) — px € Im(f — pld) C Ker(f — AId).
Ainsi E = Ker(f — pld) + Ker(f — AId).

De plus Ker(f — pld) et Ker(f —AId) sont des espaces propres de f associés & des valeurs
propres distinctes, ils sont donc en somme directe.

Dot \ E = Ker(f — pId) & Ker(f — AId). \

(e) On en déduit que ‘ f est diagonalisable et Sp(f) C {\, u}. ‘

D’apres la question 16., on a

Ogep) = (f = Ald) o (f — pld) = (1 = A)go (A = p)p.

Comme A # u, on en déduit que .
De méme, comme (f — pld) o (f — AId) = 0, on trouve .

Enfin, comme Id = p + ¢, on obtient, en composant par p (resp. par q) : |p=p

=)

Comme A et g sont non-nuls, f n’admet pas la valeur propre 0. Donc Ker f = {0}, et comme

2| (resp.

FE est de dimension finie, ‘ f est un isomorphisme. ‘

De plus, on a vu en 16. que f2 — (A +p)f+ (Ap)Id = 0z(p), ie. fo(f — A+ p)ld) = —Auld.

-1
—(f—=(A\+p)Id). On remplace f et Id a ’aide de p et g, ce qui donne finalement

Dou f~! =
Al

1 1
ft=sp+—a
A H — Récurrence

On va montrer par récurrence que, pour tout m € Z, f™ = AX"p + u™q. Une telle récur-

Initialisation : rence nous permet
. m m m s , N , de prouver les cas
L7a re}atlon f = A p/—i—/u q est vérifiée pour m = 0,1, 2 d’apres I’énoncé, et pour m = —1 m>0etm<0en
d’apres la question précédente. méme temps mais il
Hérédité : aurait aussi été pos-
sible de rédiger deux

Soit m € Z, on suppose que f™ = A™p + p™q. Montrons qu’alors f™ 1 = X" "lp 4 g
et ferl — >\m+1p+'um+lq.

En composant par f = Ap 4+ pg on obtient

récurrences.

F = Ot pg) o (N"p+p™q) = X+ " T+ A pog+ A qop = XM p+ g
De méme, en composant par f = A" 1p + u~1q on obtient
= (T T o (N p ™) = XTI T P AT M pogH T A gop = A pt ™ g

Ce qui prouve la propriété voulue aux rangs m — 1 et m + 1 et achéve la récurrence

On a donc montré que ‘ Ym e Z, f" =\"p+ u"q. ‘

Soient deux réels a et 3 tels que ap + Bq = 0.

En composant par p, on obtient ap = 0 donc a = 0 puisque p # 0. De méme, en composant
par ¢, on obtient 5 = 0.

Donc (p, q) est une famille libre et | dim(F') =2 |.
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21. Soit h € R(f) N F. Alors il existe (a, 8) € R? tel que h = ap + fq et h? = f
Or, comme pog=gqop =0, h? =a’p+ B%q¢=f = \p + uq.
Comme (p, q) est une famille libre, on en déduit que o = X et 5% = p.
On obtient 4 possibilités, qui, réciproquement, conviennent toutes.

Par conséquent,

R(f)NE = {V p+ /g, VIp — /g, —p + ig, =V p — \/lig}

22. Définissons la matrice K diagonale par blocs de la fagon suivante :

0 1
1 0
I

Un produit par blocs nous donne alors .

23. On va raisonner matriciellement.

K =

Appelons k Tordre de multiplicité de la valeur propre A (k > 2) et considérons une base B
de E formée de vecteurs propres de f. C’est également une base formée de vecteurs propres
de p et de g car p = 3

3l etg= M%\(f — Ald).

De plus, dans la base B, leurs matrices sont des formes suivantes

Mats(f):(A(‘)rk uzg_k)’ M"”B(p):(jé“ ono_k> ot Matﬂq):(‘f*oéc fno_k)'

Soit alors p’ ’endomorphisme dont la matrice dans la base B est :

K| 0
= ()

ol la matrice K € M (R) a été définie & la question précédente.

De plus,
e un produit par blocs donne M? = Matg(p), donc p> = p,
e des produits par blocs donnent MMatg(q) = Matp(q)M = 0, donc p' og = gop' = 0y,
e comme M n’est pas diagonale, p’ ¢ F = Vect(p, q).

L’endomorphisme p’ ainsi construit vérifie p’ € LIE)\ F, p? =pet p'og=qop’ =0r(p.
(E)

24. Si dim(E) > 3, alors A ou pu est d’ordre au moins 2. Supposons par exemple que c’est .
Posons h = \F/\p’ + /g, ot p’ est 'endomorphisme défini a la question précédente.
On a alors h? = Ap+ g = f par propriétés de p’ et g, et pourtant h ¢ F car p’ ¢ F et X # 0.
Ainsi, ‘si dim(E) > 3, alors R(f) ¢ F. ‘

Réponse du probléme 2

Partie I —  Un produit scalaire sur E

1. Soit (o, B) € R?, alors (o — 8)2 > 0, cest-a-dire o — 208 + 32 > 0 D’on

V(o, B) € [0,+00[*  aB < Z(a®+ 57

N —

“+o0
2. Soit f et g deux fonctions continues sur R’} a valeurs réelles telles que les intégrales / f (t)Qe*t2 dt
0

o0 2
et/ g(t)*e™" dt convergent.
0
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On sait que

V(a, B) € [0, +-00[? af < =(a? + %)

| —

Ainsi, en appliquant ce résultat & |f| et |g| on obtient

VEER,  0<|f(t)gt)e | < L TR ¢

et donc
VteR, 0 |f(t)g(t)]

L2 4 g(1)?
2

N

Or l'intégrale / et dt converge, donc par théoréme de comparaison pour les

—0o0

400
intégrales des fonctions positives on en déduit que 'intégrale / [f () g(t)e‘ﬁ dt converge.

— 00

+oo
Ainsi | intégrale / f (t)g(t)e*tz dt est absolument convergente donc convergente |.

— 00

3. (a) La fonction constante égale & 0 appartient & E donc E # ().

Soit A € R et (f,g) € E% Alors f + \g est bien continue et on a (f(t) + Ag(t))* =
F£)? +2Xf(t)g(t) + Ng(t)*.

“+o00 +oo o0
Or les intégrales / f(t)*at, / f)g(t)dt et / g(t)? dt sont convergentes ainsi

oo —o0 —o0 —o0
lintégrale / (F(t) + Ag(t))* dt converge et donc f + Ag € E.

Finalement E est un sous-espace vectoriel de C°(R) et donc un espace vectoriel.
+o0
(b) Notons d’abord que si f et g sont deux éléments de FE, alors / f(x)g(;v)e_””2 dz

— 00

converge donc (f,g) est bien définie et prend des valeurs réelles

e Soit A un réel et soit f, g et h trois éléments de E. Alors

—+o0

g+ ) = / £(@) (g(a) + Mh(a))e™ da

— 00

+o0
N / F@)g(x)e™™ + Af(z)h(z)e™" du

—00

+oo R +oo 5
:/ f(x)g(x)e™™ da:+)\/ f()h(z)e™™ dx

—00 —00

=(f,9) + X(f. h)

Ainsi application (f, g) — (f, g) est linéaire & droite
e Soit f et g deux éléments de E, on a alors

+oo

+o0
(f. ) = / f(@)g(x)e " dz = / g(@)f(@)e dz = (g, f)

—00 —0Q0

Ainsi Papplication (f,g) — (f,g) est symétrique, comme elle est linéaire & droite
elle est donc aussi linéaire a gauche.

e Soit f € E, on a
2
Vx € R,f(ac)2e_r >0

Ainsi, par positivité de l'intégrale, on a
o0 5
ta= [ e dr >0

Ainsi Papplication (f, g) — (f, g) est positive

12 décembre 2025 14 Bastien Marmeth



Lycée La Martiniére Monplaisir PT 2025-2026

e Soit f € E telle que (f, f) = 0. On sait que

Vo € R,f(m)ze_w2 >0

et que la fonction = — f(x)ze*””2 est continue sur R.

Une fonction continue et positive d’intégrale nulle est nulle sur I'intervalle d’inté-
gration, ainsi
2
Vo € R, f(x)?e ™ =0

D’ou, comme ’exponentielle ne s’annule jamais
Vz € R, f(x)=0

C’est-a-dire f = 0p.
Ainsi application (f, g) — (f, g) est définie positive.

Finalement |’application (f,g) — (f, g) est bien un produit scalaire sur E. ‘

4. Soit k € N, Montrons que & — z* appartient & E.
+oo

2
Tout d’abord z +— z* est continue sur R. Montrons maintenant que / (xk) e dz

— 00
converge.

x

. kN2 22, . e 2 s . s
La fonction = +— (x ) e étant continue sur R, 'intégrale n’est impropre qu’en —ooet +o00

. 2 g2 . p
Ol’l a lim ((EQ (l’k) e " )) =0 par croissances comparees.
r—r+400

1
Ainsi (xk)2 e = (2>
Tr—r+00 x

. 1
De plus, pour x > 1 on a (l'k)2e_12 z0et — 20;
T

—+oo

Enfin l'intégrale / —; converge par critere de Riemann
.z

Les regles de comparaison sur les intégrales généralisées de fonctions positives nous donnent

alors la convergence de /4—00(3:’“)2 ¢~ dz donc la convergence de /+oo (xk)2 e da — Remarque
1 0

) ) ) ) Si f est paire alors
Comme la fonction = — (xk) e~ " est paire sur R, 'intégrale / O(mk) e~ * dx converge /+°° (@) da et
0

— 00

également.

o

0
/ f(x)dx ont

méme nature et
meéme valeur si elles
convergent

Ainsi / +oo(mk)2 e dz converge.
—0o0

On a donc montré que
VkeNz—zFeE

Or E est un espace vectoriel donc toute combinaison linéaire d’éléments de E est encore un
élément de E. En particulier toute fonction qui peut s’écrire comme combinaison linéaire de
fonctions de la forme z — 2* appartient & E.

On en déduit donc que toute fonction polynomiale appartient a F, c’est-a-dire| F' est contenu dans F.

Partie I  —  Polynomes d’Hermite
5. On a ]
Vz € R, w(x) =e""
Ainsi )
Vo € R, w'(r)=—-2ze "

2

Vr € R, w'(z) = =2 % 4 (=2x)? e = (422 —2) e
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Vr € R, w”(z) =8ze ™ + (422 —2)(—22)e ™ = (-82° +12z)e "

On en déduit que
.2 .2
Vz € R, Hi(z)=—€" (—2ze ™) =21

Vz € R, Hg(av):e""/’2 ((43:272)6*“"2) =42% -2

Vo € R, Hs(z) = ((—82° + 12x) e_mz) =82° — 122

Finalement

Vz € R, Hi(z) =2z, Hy(zx)=4x>—-2 et Hz(z)=8z%—12z.

6. (a) Soit n € N, on a
Yz € R, H,(z)=(-1)" e w™ (x)

En dérivant on obtient :

Ve eR,  H.(z)=(-1)"2z)e" w™(@)+(-1)" e w™ D (z) = 22 H,(z)— (1) e” w1 (z)

Ainsi

Vr € R, H) (r)=2x Hy(x) — Hpy1(2)
ou encore

Vr € R, Hyy1(z) = 22H, (z) — H] ()
Ainsi

YneN, VrekR, Hy,y1(z) = 2zH,(z) — H],(z) ‘
(b) On proceéde par récurrence sur n. — AAttention

On sait déja que Hy est un polynoéme de de degré 0. Si P et Q sont deux
Soit n € N, on suppose que H,, est un polynoéme de degré n. Ainsi H/, est un polynome polynomes on a
de degré n — 1. On sait que H,,+1 = 2XH,, — H},, deg(P + Q)

max(deg(P), deg(Q)).
Il y a égalité si

on a deg(2X H,,) = n+1 > deg(H},) ainsi deg(H,,+1) = n+1 ce qui prouve la propriété | deg(P) # deg(Q)
au rang n + 1 et achéve la récurrence mais pas en général

Ainsi ‘ Pour n € N, H,, est un polynéme de degré n. ‘

(¢) Soit x un réel. on a Hy = 1, alors

Hy =2XHy — H) =2X

Hy, =2XH, — H =2X x (2X) —2=4X?% -2
Hs = 2XHy — Hy =2X(4X? - 2) — 8X =8X? — 12X
Hy =2XHz — H; = 2X(8X® — 12X) — (24X? — 12) = 16 X* — 48X? + 12

Nous avons ainsi retrouvé les résultats de la question 6., de plus :

VreR,  Hi(x) =162 - 482° + 12]

7. Pour n € N, notons a, le coefficient du terme de plus haut degré de H,. Montrons par
récurrence que a, = 2"

Initialisation :

Pourn=0onaag=1=2°

Hérédité :

Soit n € N, on suppose que a,, = 2". On peut donc écrire H,, = 2" X"+Q avec deg(Q)legslantn—
1.
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On a alors
H,\ 1 =2XH, — H =2""' X"t L 2XQ - H!

Or deg(2XQ — H,) < max(deg(2X@Q),deg(H,,) < n. Ainsi le monéme de degré n + 1 de
H, 1 est 2"t X" et donc le coefficient de degré n + 1 de H,, 41 est 2" ! ce qui prouve la

propriété au rang n + 1 et acheve la récurrence.
8. On va montrer par récurrence sur n la propriété

P(n) : Vr e R, H,(—z)=(-1)"H,(z)
Initialisation :
Pour n = 0 on a bien Ho(—z) =1 = (-1)°H,(z)
Hérédité :

Soit n € N, on suppose que
Vr € R, H,(—z) = (-1)"H,(z)

En dérivant on a alors
Vr € R, —H'

n(—x) = (=1)"H) (x)
D’ou
Vo eR,  Hj(—x)=(-1)"""H}(x)
Soit z € R, on a
Hy 1 () = 2(—x)Hp(—x) — Hy (—2)

= —2(—1)"Hy(z) — ()"t H, ()

= —(1)" (2zH,(z) — H) (x))

= ()" Hyp1(2)

Ce qui prouve la propriété au rang n + 1 et acheve la récurrence.

On a donc

(yneN,  VzeR,  Hy(-2)=(-1)"Hy(2)]

On en déduit que‘ H,, est une fonction paire si n est pair et H,, est une fonction impaire si n est impair.

Partie IIl  —  Lien entre le produit scalaire et les polynomes d’Hermite

9. (a) Soit P€ Fetsoit A<Oet B>0,ona

B B
/ P/(2)H,_1(z)e® do = / P'(z)(=1)" e w™ VD (z)e dx
A A

B
= (—1)"_1/ P'(z)w™ Y (z) da

A

= (1 [Pl @]+ (-0

A

A

i B
= (-1t _P(J;)Hn_l(x)e_rZ}B +/ P(av)Hn(aL")e_””2 dz

A

- B
= (~1)"! _p(x)Hn_l(x)e*ﬂB+ / P(x)H,(z)e™™ dz

A A

2

Notons d le degré de P, on a alors P(z)H,,—1(x)e™™ ~ gl e ot P(x)Hp—1(x)e™™

Tr—r+00
2
xdxnflefm
Or, par croissance comparées, li
T—+00 T——00
2

. —z? . —x
IBTOO P(z)Hp—1(x)e”® =0et IEI}loo P(z)H,_1(z)e”™ =0

On a donc 5
lim  (~1)"! [P(x)Hn,l(x)e—xQ =0

A——o0, B—+o0

B

P(z)w™ (z) dz

— — 2 . — —_ 2 N
m z%" le™ =0et lim z% " le™® =0, don

~

r——00
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De plus
B
lim / P’(Jc)Hn,l(ac)e_x2 dz = (P',H,_1)
A

A——o00, B>+00

B
. —7:2 —
A—>—°1°17r%—>+0°/,4 P(z)H,(z)e ™ dz = (P, H,)

Finalement on a bien

\vn eN', YPeF, (P H, ) =(PH,) \

(b) Soit P € F,_1, en itérant la formule précédente on obtient
(P, Hy) = (P', Hy 1) = (P", Hy_5) = -+ = (P""), Ho)

Or, deg(P) < n — 1 donc P™ =0 et donc (P™, Hy) = 0.
Ainsi
VPeF, .\, (PH,)=0

(¢) Soit n € N, et soit (i,5) € [1,n]?, avec i # j, supposons pour fixer les idées que i < j, on
a alors i < j — 1 et donc H; € F;_q, ainsi, d’apres le question précédente (H;, H;) = 0.

‘La famille (Hy, - -- , H,) est donc bien une famille orthogonale ‘

10. La famille (Hy,-- , H,) est donc une famille orthogonale qui ne contient pas le polynéme
nul, ainsi c¢’est une famille libre. De plus c¢’est une famille libre de cardinal n + 1 dans F,, qui
est un espace vectoriel de dimension n + 1, c’est donc une base de F,.

11. Soit n € N.

(a) On a vu précédemment que, pour P € F on a
(P.Hy) = (P Hy1) = (P, Hy) = - = (P, Hy)

En particulier pour P = H,, on obtient

1Hul* = (Hn, Hy) = (H{, Ho)

(b) On a
1H|* = (H", Ho)

Or Hy =1 et H, est un polyndéme de degré exactement n de coefficient dominant 2",
ainsi H{™ = n!2". On a donc

|H,|? = (n12",1) = ni2"

Ainsi

|Hy,|| = Vnl2»

12. (a) La famille (Hy, H1) est une base orthogonale de R;[X]. Il nous suffit de la renormaliser

D’aprés la question précédente ||Ho|| =1 et ||Hy| = V2.

Mo - M,
[[Holl™ [|Hy |

(b) Soit k € [0,2]?, on a

Ainsi | la famille <

) = (1, \/§X> est une base orthonormée de R;[X].

[(1,Ho) =1, (X, Hp) =0

1 1
(X% Hy) = <Z(H2 +2H,), Hy) = 3

Et
1
(LH) =0, (X, H)= g |Hf? =1
1
(X% Hy) = <Z(H2 +2Hy),Hy) =0
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(c) Soit @ € Ry[X], on sait que

Hy H,y 1
Pr,[x)(Q) = (Q, Ho)Ho + (Q, m>m =(Q, Ho)Ho + §<Q7H1>H1
En notant Q = aX? 4+ bX + ¢ on a ainsi
Calcul
(Q)_a—i—QcH +9H —bXJrCH_ZC Commepml[xl
PRy [X] o 2 0 2 L= est I'identité sur
o R1[X] il suffisait en
On en déduit que fait de déterminer
Pr,[X] (XQ)
1
1 0 3
Mat (1 x,x2)(Prx1) = | 0 1 0
0 0 O
19 Bastien Marmeth
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